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Abstract 

Existing methods for recovering traceability links 
among software documentation artifacts analyze 
textual similarities among these artifacts.  It may be the 
case, however, that related documentation elements 
share little terminology or phrasing. This paper 
presents a technique for indirectly recovering these 
traceability links in requirements documentation by 
combining textual with structural information as we 
conjecture that related requirements share related 
source code elements.  A preliminary case study 
indicates that our combined approach improves the 
precision and recall of recovering relevant links among 
documents as compared to stand-alone methods based 
solely on analyzing textual similarities. 

1. Introduction 

Existing methods of traceability link recovery rely on 
the analysis of textual information derived from 
software artifacts using Information Retrieval (IR) 
techniques [1, 2, 7, 11, 13, 18, 19, 21].  Feature and 
class descriptions in external documentation, for 
instance, are often likely to share some terms in 
common with their related source code artifacts due to 
naming conventions and formats that enforce identifier 
names, making IR techniques effective at discovering 
these documentation-to-source traceability links.  
However, there is no reason why two related 
documentation artifacts will use similar terminology 
since they might describe different tasks.  IR methods 
are unlikely to recover useful traceability links in this 
situation.  Therefore, an analysis of textual similarities 
among related source code artifacts (e.g., classes) may 
not yield any pertinent links. 

Another approach to traceability link recovery is 
structural analysis, which alleviates this particular 
problem by examining control and data flow (i.e., 
coupling) among source code artifacts.   

Taken together, textual and structural analyses 

provide good methods to find source-to-source and 
source-to-documentation links, but not documentation-
to-documentation links. Structural analysis clearly 
lends itself to source code analysis, whereas using IR 
methods for traceability link recovery is a well-studied 
problem [1, 6-9, 11, 13, 15, 21].  In this work, we 
combine both textual and structural analysis methods 
on two types of software artifacts (i.e., source code and 
documentation) as well as on artifacts of one type to 
another, to create an indirect traceability link recovery 
scheme for software documentation.   

This paper makes the following contributions: 
 A method for indirectly recovering traceability links 

in requirements documentation using a combination 
of textual and structural information; 

 A comparison of the proposed method with existing 
IR-based approaches for traceability link recovery; 

 An investigation into the impacts of choosing various 
dimensionality reduction factors on the performance 
of both combined and stand-alone IR methods. 
The paper is organized as follows.  Section 2 

presents background information on existing 
approaches for traceability link recovery.  Section 3 
outlines some key details of our approach.  Section 4 
presents an initial case study comparing the proposed 
combination with existing methods. Finally, related 
work and conclusions are outlined in Sections 6 and 7 
respectively. 

2. Background 

In this section, we provide essential background 
information on the tools we use for textual and static 
analysis of software artifacts. 

2.1. Textual analysis 

Latent Semantic Indexing (LSI) [10] is an IR 
technique that is used to determine textual similarities 
among words and documents in large passages of text.  
For example, LSI can determine how similar the text of 



 

  

a section of documentation is to the text of a method in 
source code.   

LSI works by extracting all the words from a set of 
documents and generating a corpus.  In our case, the 
documents are source code methods and sections of 
external documentation.  Common words, known as 
stop words, are removed from the resulting corpus.  
Words in the corpus documents are converted to their 
stems (e.g. “words” becomes “word” and “converted” 
becomes “convert”).  Additionally, compound 
identifiers, such as “compoundName” and 
“compound_name,” are split based on the observed 
naming conventions.  Next, LSI indexes the corpus and 
creates a signature for each document.  This signature is 
used to determine similarity values between the 
documents.  If one wishes to find source code methods 
that pertain to a section of documentation, the cosine 
similarity values are computed between this section of 
documentation and all the other source code documents 
in the corpus.   

Often, the number of documents prohibits manual 
inspection of all the documents in the results, thus 
several different strategies, such as cut-points, 
thresholds and combined strategies [1, 7, 21] for 
retrieving candidate traceability links are used.  In this 
work, we use a strategy based on similarity threshold 
values.  According to this strategy, all documents with 
a textual similarity value above the threshold are 
considered as candidate traceability links. 

Like the Vector Space Model (VSM) of analysis it is 
based on, LSI forms a term-by-document matrix in 
which term frequencies are included for each 
document; that is, each entry represents how common a 
given term is in a given document.  When working with 
a natural language, however, related terms will not 
always overlap.  Thus two documents will not be 
considered related if they discuss related topics but use 
a different vocabulary.  This is known as the synonymy 
problem in natural language processing. 

By applying Singular Value Decomposition (SVD) 
[27], LSI is able to somewhat overcome this problem 
[17].  SVD breaks the term-by-document matrix into 
singular values and vectors that are truncated such that 
the most significant portions of the matrix are 
preserved.  These top components are reconstituted into 
an approximation of the term-by-document matrix.  
Document similarities are found by comparing the 
vectors of this approximation, just as is done with the 
original in VSM. As a result, SVD creates an 
approximation in which related documents appear to 
have a higher similarity because they share more 
related terms [7, 16, 17].  The number of most 
significant entries is known as the dimensionality 
reduction factor for SVD.  Intuitively, since smaller 
reduction factors mean less space in which to 

approximate the term-by-document matrix, more 
documents will appear related as the reduction factor is 
decreased.  In other words, low dimensionality 
reduction factors exaggerate the effects of SVD 
approximation.  We explore how this behavior affects 
our approach during the case study. 

2.2. Structural analysis 

JRipples1 [3] is a structural analysis tool for tracking 
incremental changes in Java systems.  Taking as input 
source code and an indicated main method, JRipples 
builds an Evolving Interoperation Graph (EIG) [25] at 
either class or method granularity.  At method 
granularity, for example, the output of this initial 
analysis is a graph where all methods and variables are 
nodes (of type method and field, respectively) and all 
relationships among these nodes are directed edges.  
Methods point to all variables used and other methods 
called within.  As the programmer adds or alters 
functionality to the system, JRipples provides a list of 
related code portions for the programmer to step 
through and mark indicating whether a change needs to 
occur to that area.  We use JRipples in our work to 
recover source-to-source traceability links among 
source code artifacts (i.e., methods or classes). 

3. Approach 

The intermediate goal in combining structural and 
textual analysis is to combine the two sources of 
information into a common representation.  Our 
solution is based on a traceability link graph (TLG) 
that encodes all recovered textual and structural links as 
edges between nodes representing either program 
requirements or source code methods.  The following 
are requisite definitions used in our model: 

Definition.  A source artifact node in a TLG is any 
node describing a portion of source code (e.g., a 
method). 

Definition.  A documentation artifact node in a TLG 
is any node describing a portion of software 
documentation (e.g., a section in documentation). 

Definition.  A document-to-source edge in a TLG is 
an edge between a documentation artifact node and a 
source artifact node describing a traceability link 
between these nodes’ respective software artifacts. 

Definition.  A source-to-source edge in a TLG is an 
edge between two source artifact nodes describing a 
traceability link between these nodes’ respective 
software artifacts. 

Definition.  A document-to-document edge in a TLG 
is an edge between two documentation artifact nodes 
describing a traceability link between these nodes’ 

                                                           
1 http://jripples.sourceforge.net/ (verified on 1/17/09) 



 

  

respective software artifacts. 

3.1. TLG construction 

We collect the elements of a TLG by reading the 
information sources one at a time so that elements are 
added in this order: 
 All Java methods extracted by JRipples from the 

source code of the target system are added as 
source artifact nodes.  Technically, we do this by 
stripping the EIG of all the nodes except those for 
methods; 

 All edges between EIG nodes for Java methods 
given by JRipples are added, creating the source-
to-source edges (e.g., method invocations).  In 
other words, we use structural analysis 
implemented by JRipples to find the source-to-
source edges (i.e., coupling); 

 Since we want to find traceability links among 
requirements documentation, each requirement is 
added as a documentation artifact node; 

 The textual similarities among all Java methods 
and each requirement are obtained from LSI.  We 
apply a threshold to determine the candidate 
traceability links.  These links comprise the 
documentation-to-source edges in the TLG. 

3.2. TLG interpretation: finding new links 

The document-to-document edges of a TLG represent 
the traceability links among the requirements 
documentation and are therefore what we attempt to 
recover.  To do this, we interpret the constructed TLG 
by applying two rules in order to suggest 
documentation links.  Consider the example graph in 
Figure 1.  Nodes s[1...4] are source artifact nodes, and 
nodes d[1...3] are documentation artifact nodes.  In the 
simple case (our first rule), nodes d2 and d3 point to s4, 
so we deduce that a document-to-document edge should 
exist between those nodes because they share relevant 
source elements. That is, they reference (or are 
implemented by) the same method.  Our second rule is 
a variation on the theme as the first: we suggest a link 
between d1 and d3 because an edge exists from d1 to 
s1, from s1 to s3, and from d3 to s3.  In other words, we 

recommend linking d1 to d3 since a source code 
element pointed to by d1 is linked to a source code 
element pointed to by d3. 

Note that in our current implementation, the edges 
are not weighted.  Having one source element link to 
another will produce an edge between the associated 
nodes of those elements; another link in the same 
direction between the same elements will affect neither 
the graph nor our analysis.  The document-to-document 
edges recovered using the rules described above is our 
list of suggested candidate links for the example in 
Figure 2. 

4. Case study 

We implemented the steps defined in Section 3.1 as 
an Indirect Traceability Link Recovery Engine (ILRE), 
as presented in Figure 2.  Taking as input a similarity 
matrix from LSI, an EIG from JRipples, and a threshold 
for the similarities, the engine creates a TLG, applies 
the two rules from Section 3.2, and outputs new 
document-to-document traceability links.  

For comparison, we augmented the ILRE with 
another step to perform IR-only textual analysis on the 
requirements to suggest links in a direct, more classic 
approach.  For this purpose, the ILRE takes a second 
threshold and uses the similarity matrix previously 
provided, though this last step does not affect and is not 
affected by the TLG or the links suggested by the 

 

Figure 2: An overview of our approach 

 

Figure 1: A sample traceability link graph.  
Solid lines are harvested links; dashed lines 

are suggested ones 



 

  

indirect method.  In other words, the LSI tool runs once 
for the entire corpus (all requirements and all Java 
methods), and that information is used twice: one time 
combined with the EIG for our indirect approach and 
again alone for the direct, IR-only method. 

In order to evaluate our approach, we also needed a 
set of requirements documentation traceability links 
recovered manually to serve as an ideal set for 
quantitative evaluation.  We asked three graduate 
students unfamiliar with the CoffeeMaker code or 
project to answer the question for each pair of 
requirements A and B, “Do you expect the 
implementation of A to overlap with that of B?”  They 
then filled in a matrix with a zero, one, or two, for no, 
some, or much overlap expected between the two 
respective requirements.  We combined their answers 
into an ideal set by voting. 

The subject of our study is a small, education-
friendly software system provided by the Repository 
for Open Software Education2 called CoffeeMaker.  
Totaling around 1 KLOC, this project has seven user 

                                                           
2 http://agile.csc.ncsu.edu/rose/ (verified on 1/17/09) 

requirements implemented in 136 Java methods, the 
matching of which is somewhat intuitive since it 
emulates the functionality of a typical coffee maker. 

We keep two independent variables.  First, the 
threshold for choosing the links given by the IR tool, 
and second, the dimensionality reduction factors used 
during the IR-based link recovery process.  In brief, we 
execute the ILRE for each of four reduction factors: 15, 
25, 50, and 75.  For each reduction factor, we calculate 
the precision, recall, and f-measure for the thresholds 
from 0.1 to 0.9 in increments of 0.05 against the ideal 
set derived from the questionnaire. 

The performance results of using the ILRE and IR-
based approaches are presented in Figure 3. 

4.1. Discussion 

We wish to address the following research questions 
through our analysis of the results from the case study: 

 

Figure 3: Comparison of F-measures for different configurations of the combined (rule 1, 2, and 1&2)      
and IR-based approaches 



 

  

 Can combining structural and textual analyses 
improve the established IR-based approach to 
document-to-document traceability link recovery?  
In order to address this research question, we 
compare the textual-only approach to our ILRE 
method in the contexts in which each of the 
techniques performs best.  In other words, we want to 
look at the peak performance of IR-only and ILRE 
combined across all thresholds and all dimensionality 
reduction factors.  Figure 4 shows top combined rule 
performance at a threshold of 0.45 and reduction 
factor of 75.  While the IR-based approach is 
relatively insensitive to threshold in the lower 
reduction factors, its peak performance is at a 
threshold of 0.25 and reduction factor of 75, but still 
beneath our approach.  However, these results are not 
conclusive.  More studies on larger systems are 
necessary to finalize the conclusions. 

 Do our rules perform better together or 
individually?  In almost all cases, our rules 
complemented one another rather than being 
redundant (see Figure 3 and Figure 4).  For example, 
our peak F-measure was highest when the rules were 

mixed.  We would not see any improvements if they 
returned the same suggestions. 

 How do our rules achieve higher f-measures at the 
various dimensionality reduction factors?  As the 
dimensionality reduction factors decrease for the 
SVD done during IR, the affects of LSI's solution to 
the synonymy problem are exaggerated.  This is 
because the space into which the term matrix is being 
reduced drops in size, meaning that more terms will 
appear related.  That is, more terms will look like 
synonyms (since they will appear to occur together).  
Since the number of unique terms in the source code 
is likely to be much larger than the number in the 
requirements for our study subject (136 Java methods 
versus 7 user requirements), this conclusion is not 
unfair. 

 How are precision and recall affected by the 
various thresholds? Figure 5 shows the precision 
and recall rates for our combined rules as well as the 
IR-only results.  We expect that we will obtain fewer 
suggested links as we tighten the link selection 
criterion (that is, raise the IR threshold), and this is 
what we observe in the results.  This conclusion is 

 

Figure 4: Comparison of F-measures for the combined and IR-based approaches 



 

  

not controversial.  As we become more selective 
about the textual similarities we allow to be declared 
as links in our graph, we see increased precision in 
our list of suggestions as well as reduced recall. 

4.2. Example 

To illustrate the potential advantages of combining 
structural and textual information, consider the 
following two requirements from CoffeeMaker. 

Requirement A (RA): Waiting State. When the 
CoffeeMaker is not in use, it waits for user input.  
There are six different user input options: 1) add recipe, 
2) delete a recipe, 3) edit a recipe, 4) add inventory, 5) 
check inventory, and 6) purchase beverage. 

Requirement B (RB): Add Inventory. Inventory may 
be added to the machine at any time.  The types of 
inventory in the Coffee Maker are coffee, milk, sugar, 
and chocolate. The inventory is measured in integer 
units.  No inventory may be taken away from the 
CoffeeMaker except by purchasing a beverage.  Upon 
completion, a status message is printed and the 
CoffeeMaker is returned to the waiting state. 

All three respondents to the questionnaire expected 
the implementation of RA to have some degree of 
overlap with that of RB.  Additionally, the Use Case 

diagram3 provided by the developers of CoffeeMaker 
includes a link between these two requirements.  
During our case study, however, the LSI tool found 
textual similarities for RA and RB between 0.38 and 0.43 
for the various dimensionality reduction factors.  At 
thresholds low enough to catch this link, however, 
precision rates drop noticeably.  Our second rule finds 
this link (and others like it) at much higher IR 
thresholds, though at lower recall rates.  Links between 
RA and several others indicated in the Use Case diagram 
are those detected first (that is, at thresholds resulting in 
high precision and low recall) by Rule 2, but last by 
Rule 1 or the IR-only approach. 

5. Threats to Validity 

The most important obstacle to generalizing our 
results is the rather small scope of our input data.  
CoffeeMaker is an excellent primer for calibrating our 
approach, however it may or may not be representative 
of real-world software to provide a basis for widely-
applicable conclusions.  We need to study our approach 
on multiple datasets but under similar conditions. 

                                                           
3 http://open.ncsu.edu/se/tutorials/coffee_maker/ (verified on 1/23/09) 

 

Figure 5: Comparison of Precision and Recall measures for the combined and IR-based approaches 



 

  

We attempted to limit internal threats to validity.  
The three requirements readers were not familiar with 
the code, which could negatively affect the ideal set to 
which we compared our results.  They also had varying 
levels of understanding about this project as well as 
related knowledge.  The question they were asked was 
specific to this project rather than derived from use-
cases or other documentation artifacts. 

6. Related work 

Our approach builds on top of two well-studied 
areas of traceability recovery: textual analysis using IR 
and structural analyses.  We present prior work on 
traceability link recovery using IR-based, structural, 
and combined methods. 

6.1. Information retrieval methods 

Among the earliest attempts to find connections 
between documentation and source code is work by 
Antoniol et al [1].  They use a vector space model with 
reasonable success, which was expanded by Marcus 
and Maletic [21] using LSI in an attempt to mitigate the 
effects of synonymy and polysemy.  Marcus et al. 
perform two case studies suggesting that LSI is more 
suitable to natural language analysis than the vector 
space model.  RETRO [13] is a tool designed for 
requirements tracing that can employ several IR 
techniques, including LSI.  Advanced summary work 
by De Lucia et al. [5] adds LSI-based link recovery to 
ADAMS, a software system artifact management tool.  
The goal of their modification is to aid software 
engineers in finding links among several types of 
software artifacts, rather than only documentation-to-
source.  Additionally, they study ADAMS use on a 
large group of student users and make several 
recommendations for IR implementation.  Many tweaks 
to IR have been suggested, such as the cut-point 
method, in which the threshold is picked dynamically 
based on the IR output. 

IR methods for link recovery are useful for matching 
regions of related documentation and source code, but 
they are not always suitable on their own for problems 
such as feature location which requires specific parts of 
documentation to be matched exactly to their 
implementation in code.  A plethora of applications 
have been developed for these techniques [12, 22, 24, 
28, 29].  Zhao et al. [29] combined knowledge from 
pseudo-execution traces with candidate links given by 
the IR vector space model using a branch-reserving call 
graph to create a static, non-interactive approach.  
Eaddy et al. [12] also create a hybrid system, 
combining information retrieval, execution tracing, and 
prune dependency analysis (PDA).  PDA is a source 
code analysis technique to determine which parts of the 

source are related to one other section such that if the 
latter is removed, so can the former.  Their tool, 
Cerberus, uses PDA to find source artifacts related to 
others found by IR methods.  Natural language 
processing (NLP) has been used in ways similar to IR 
methods for link recovery.  Find-Concept [28] is a tool 
that uses NLP to locate the source code programmers 
are looking for during maintenance.   

6.2. Structural analysis methods 

Our approach uses JRipples to obtain a list of source 
code links.  This tool extracts artifact dependencies in 
Java for use in impact analysis − that is, what portions 
of the source code need to be changed alongside others 
when a developer wants to add new functionality.  
Impacted artifacts are labeled and returned to the user 
to facilitate navigation.  Instead of this purpose, 
however, we use the source-to-source links in 
conjunction with document-to-source links for indirect 
link recovery. 

Structural analysis can only be applied to source 
code, not documentation.  Several approaches exist that 
attempt to link source code to a particular concept or 
feature.  Chen and Rajlich [4] presented a study of 
feature location using dependence graphs by examining 
data and control flow in software.  Robillard [26] 
developed an approach that automatically proposes and 
ranks methods that may be of interest to a programmer 
using fuzzy sets and the topology of a program.  

6.3. Combined analysis methods 

We are not the first to suggest attaching structural 
analysis to textual.  Maletic and Marcus [20] use 
semantic and structural information to cluster 
components for program comprehension.  As noted 
above, Cerberus feeds the results of both analyses to 
prune dependency analysis for feature location.  
Another system, Dora [14], uses a program's call graph 
to isolate a neighborhood of methods relevant to a 
given seed.  Eaddy et al. suggest that these tools could 
be combined to fully automate the process by inputting 
to Dora the Cerberus' output.  That is, a user's input of 
features would output the neighborhood of related 
methods.  In our prior work [23], we used LSI to 
determine links in documentation, and coupling 
measures were used to find links in source code.  
Strong coupling should also mean high similarities 
among the corresponding sections of documentation.  
The approach can be used to find disparities between 
the two so that documentation can be updated to reflect 
the code’s actual structure.        

 



 

  

7. Conclusions 

We combine textual and structural analyses of 
software artifacts, two widely-accepted techniques for 
recovering traceability links, and conduct a preliminary 
case study. The results indicate stable but rather minor 
improvements over a classic, single-pronged approach 
based on textual analysis only.  Our evaluation covers a 
wide range of IR thresholds and dimensionality 
reduction factors, with regular and expected overall 
trends in performance.  These results are promising as 
they imply that we can harvest additional information 
from the implementation of software requirements 
about how those requirements are related. 
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